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Outflow Boundary Conditions for Spatial Navier-Stokes
Simulations of Transition Boundary Layers
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For numerical simulations of the spatially evolving laminar-turbulent transition process in boundary layers
using the complete Navier-Stokes equations, the treatment of the outflow boundary requires special attention.
The disturbances must pass through this boundary without causing reflections that would significantly alter the
flow upstream. In this paper, we present various methods to influence the disturbed flow downstream of the
region of interest, such that the disturbance level at the outflow boundary is significantly reduced, and hence the
possibility of reflections is minimized. To demonstrate the effectiveness of the various techniques to alter the
disturbance flow near the outflow boundary, the fundamental breakdown of a strongly decelerated boundary
layer is simulated. Our results show that the most effective method is to spatially suppress the disturbance
vorticity within a so-called "relaminarization zone." The suppression of the disturbance vorticity is gradually
imposed within this zone by means of a weighting function. The enforced decay of the disturbance vorticity leads
to a practically complete dissipation of any fluctuating component. Most importantly, this technique causes only
a negligible upstream effect. The "relaminarized" boundary-layer flow then passes through the outflow
boundary without significant reflections.

I. Introduction

I N the literature, most numerical simulations of laminar-
turbulent transition phenomena are based on the so-called

temporal model. In this model, the flow is assumed to be
spatially periodic in the downstream direction so that periodic
boundary conditions can be employed at the inflow and out-
flow boundaries, i.e., inflow quantities for both the base flow
and the disturbance flow are identical at the inflow and out-
flow boundaries. The spatial periodicity allows efficient use of
(pseudo) spectral approximations in the downstream direc-
tion. In addition to allowing a small spatial integration do-
main containing only one wavelength, this enables simulations
that are relatively inexpensive with respect to both required
computer memory and time. Because of the forced spatial
periodicity, the disturbances evolve in time, and a characteris-
tic velocity, usually the phase velocity, has to be used to
compare the numerical results with those observed in the
spatial disturbance development of experiments. Applied to
simulations of transition phenomena in plane Poiseuille flow
and zero pressure gradient boundary layers, this model yields
good qualitative agreement with experiments (see Kleiser and
Zang1).

For boundary-layer flows with a more pronounced down-
stream variation, e.g., boundary layers with pressure gradients
and/or local suction at the wall, the assumptions in the tempo-
ral model are no longer justifiable. For such flows, the so-
called spatial model should be used for realistic transition
simulation. However, compared with the temporal approach,
use of the spatial model introduces two major difficulties.

1) Since the transition process extends over a large down-
stream region, a large downstream integration domain is re-
quired, in contrast to the one-wavelength domain for the
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temporal model. Consequently, the computational cost is sig-
nificantly higher with respect to both computation time and
storage requirements.

2) Boundary conditions for the outflow boundary have to
be specified and implemented into the numerical model, such
that even the nonperiodic, large-amplitude fluctuations result-
ing from the breakdown process can pass through this
boundary without causing unphysical upstream effects.

Physical and unphysical upstream effects are central to the
problem. For incompresible flows, physical directional influ-
ence, even against the mean flow, is understandable2 when the
divergence of the vector momentum equation is taken, yielding

V2/? = p ——— = local source at point jc/ (1)

Clearly, superposable pressure fields are generated in the field
when the derivative products are nonzero, as will be the case in
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Fig. 1 Integration domain and function fx for the disturbance gener-
ation by blowing and suction.
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the nonlinear stages of primary and higher instabilities. For
nearly parallel flows, the dominant physical source in the early
stages is linearizable around the base flow UB, yielding
-2p(duB/dy)(dv'/dx) for the local p' source. Here, the
primes indicate perturbations around the base flow. Buell and
Huerre2 express p in the form of an integral equation in terms
of the Green's function of the elliptic Poisson equation and
show how terms in the surface integral over the finite integra-
tion domain cause unphysical reflections of the physical
sources within the domain.

As an example, let us consider the conditions at the inflow
boundary at XQ of Fig. 1, which is usually far from the ampli-
fied sources near the breakdown. If we would, for example,
prescribe the velocity fluctuations at Jt0, we would force the
gradient of the pressure field due to the sources in Eq. (1) to
be zero at that plane, which is seldom true. However, the
sources in Eq. (1) are of the quadrupole type (except at solid
walls where they are of the dipole type). As such, their fields
decay rapidly with distance from the source. Thus the motion
induced by grad/7, which is suppressed (and thereby reflected)
by the prescribed boundary condition at XQ, is likely to be so
small as to be below the resolution of numerical and/or phys-
ical "measuring instruments" near XQ.

The situation is vastly different at the outflow boundary XN
of Fig. 1, which may cut right through the largest convected
vortical disturbances. This situation is reminiscent of the
4'edge-tone" phenomenon in a jet flow, where a solid stream-
wise boundary interferes with convected large eddies and
thereby generates strong dipole sources. These in turn radiate
to the "inflow boundary" at the "jet lips" and establish a
self-excited (globally unstable) system. The prescribed outflow
conditions over the plane XN interfere similarly with the other-
wise unhindered vorticity field, thus generating dipole-like
sources that radiate unphysically into the domain.3 In fact,
coupling of these disturbances with inflow boundary condi-
tions may lead to unphysical self-excited, regular or chaotic
flowfields, e.g., Buell and Huerre2 and Grinstein et al.,4 in the
case of free mixing layers. In our problem, the pressure of the
(damping) wall at y - 0 makes the situation less extreme but
important nevertheless.

Based on our extensive experience in spatial simulations for
various flow geometries, we feel that conditions that are com-
pletely satisfactory and fairly general to work for different
situations are very difficult to find. One way to bypass the
need for proper outflow boundary conditions is to use an
integration domain such that the outflow boundary is always
ahead of the vorticity disturbance front (see Fasel et al.5 and
Konzelmann et al.6), which varies with the initial disturbance
startup. Thus, the convected vortical disturbances do not
reach the outflow boundary. The wave front breaks down in a
high-frequency random motion not unlike the experimental
situation. This random region is growing rapidly as time goes
on, and therefore the outflow boundary has to be moved
farther and farther downstream. In a realistic breakdown
simulation, the random region finally extends to about two-
thirds of the integration domain. Therefore, the computa-
tional time and memory requirements grow nonlinearly when
the domain of interest is increased. This approach may be
criticized on two counts: 1) the largest sources in Eq. (1) occur
near the transient vorticity disturbance front, which is depen-
dent on the initial conditions, and therefore the unphysical
reflections of these large near-outflow sources could be signif-
icant; and 2) no rigorous operational criteria have yet been
proposed to test how much of the computed field is indepen-
dent of the initial conditions and the dipole outflow reflec-
tions.

The propagation and spreading of the random domain sug-
gest a different strategy to deal with the outflow region. In this
strategy, the physical location of the outflow boundary is
moved far downstream by employing a rapidly expanding
computational grid. In addition to being able to move the
outflow boundary far downstream with a few grid points, the

idea is that the small-scale random motion would be grossly
under-resolved in this coarse grid and would therefore not
develop downstream as before but, rather, would be damped
out. First attempts to implement this idea, however, did not
yield satisfactory results. Therefore this approach requires
further detailed investigations and is currently the subject of
ongoing research. In any case, use of a nonuniform grid would
increase computation time and/or memory requirements.

A different approach to deal with the outflow boundary
conditions is based on using physical mechanisms to stabilize
the boundary-layer flow in a region near the outflow
boundary, i.e., to introduce a so-called relaminarization zone.
The goal of this strategy is to drastically reduce the distur-
bance amplitudes in this region so that undue reflections
would be reduced accordingly. For small disturbance ampli-
tudes, boundary conditions can be specified and implemented
into a Navier-Stokes code, causing only negligible upstream
influence, as shown by Fasel et al.5 Favorable pressure gradi-
ents or local suction at the wall can be employed as physical
means to stabilize the flow. These measures are known to
highly stabilize the boundary layer, at least with respect to
small amplitude disturbances. Another viable tool would be to
increase the viscosity locally (far beyond levels where viscosity
is known to be destabilizing) to make the conditions near the
outflow subcritical.

In this paper, attempts to incorporate this strategy of using
a stabilization zone near the outflow boundary for transition
simulations based on the complete Navier-Stokes equations
are discussed. To demonstrate the efficiency of the various
methods of stabilization, the simulation of a fundamental
breakdown in a strongly decelerated flat plate-boundary layer
was chosen as a test case. Using this test case was advanta-
geous for two reasons. First, the amplitude levels before
breakdown are larger than, for example, for zero and negative
pressure gradients. In addition, the pressure feedback is
stronger than for the zero and negative pressure gradient
cases. This case therefore represents a much more stringent
test with regard to the effectiveness of the various stabilization
techniques. Second, the large amplitudes are attained within a
relatively short distance downstream of the disturbance gener-
ation. Thus these calculations can be carried out with a much
smaller domain than for a case with zero pressure gradient,
thereby minimizing the computational cost.

As will be seen, we found that increasing the viscosity
locally was most effective but still not satisfactory. However,
based on the experience from these investigations, we were led
to a rather effective method to drastically reduce the distur-
bance level within a relatively small "relaminarization zone."
Within this outflow region, the vorticity components of the
fluctuations are gradually suppressed in the downstream direc-
tion. This leads to a practically complete dissipation of any
fluctuation component at the end of the relaminarization
zone. This approach results in minimal upstream effects and
can be numerically implemented at no additional cost.

A different but somewhat related method was suggested by
Spalart7 for a spatial transition simulation using the stream-
wise periodic model. By applying a forcing function on the
longitudinal velocity component of a steady stagnation point
flow, he was able to use periodic boundary conditions for the
two outflow boundaries in the simulation of the unsteady
disturbed flow. However, a part of the base flow was also
suppressed and not only the disturbance flow as in our relam-
inarization technique. Later, Spalart8 extended his method to
realistic inflow-outflow problems by superimposing (in the
"fringes" of the computational domain) a disturbance decay
on the base flow. Source terms are added on the right-hand
sides of the momentum equations to avoid the re-entering of
disturbances into the stream wise quasiperiodic domain.

The techniques to reduce the disturbance level through re-
laminarization zones invariably introduce nonhomogeneous
changes in the basic differential equation system either gradu-
ally or at discrete surf aces,, or both. In other words, they are
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equivalent to effective spatial (or time) dependence of the
coefficients of the differential operators. Such effective varia-
tion of properties of the medium generates partial internal
reflections and upstream influences, which are very difficult to
estimate analytically. When the variation is gradual, the re-
flections are expected to be very weak, no worse than quadru-
pole like. We are, in fact, testing if they are minor, not by
analysis, but through comparing numerical results obtained
from our numerical difference scheme. The unphysical influ-
ence field from these artificial sources also decays with dis-
tance, so it should not contaminate the basic physical mecha-
nisms in the regions of interest.

II. Numerical Method
The numerical method is based on the work of Fasel et al.5

This method has been successfully applied to various transi-
tion studies, albeit with a more or less extended stream wise
integration domain as discussed previously. The Navier-
Stokes equations are solved in a rectangular integration do-
main, shown schematically in Fig. 1. The downstream direc-
tion is ;c, the direction normal to the plate is y, and the
spanwise direction is z. The velocity components are u, v, and
w. All variables are nondimensionalized with a reference
length L and the freestream velocity £/«,. The nondimensional
variables relate to the corresponding dimensional ones (de-
noted by bars) as

x y
x=-> y = ̂

JU Li

u

~,
LJ

-UMt—
l-i

iv
—
t/oo

(2)

The Reynolds number is Re = U^L/v), where v is the
kinematic viscosity. The three vorticity components are de-
fined as

_i_ av
'Re dx

dw
= ~dz~

dw
~^y
du
dz (3)

du 1 dv
z dy Re dx

The flow variables are decomposed into those of the two-
dimensional base flow (index B) and of the disturbance flow
(denoted by a prime):

u = UB + u '

v = vb + v' (4)

To calculate the base flow, the Navier-Stokes equations are
used in a vorticity-velocity formulation9 with a vorticity trans-
port equation for co^,

1 d2uzB d2uzB

a Poisson-type equation for vB9

d2vB

--&-
1 d2vB

Re dx2

and for UB,

d2uB

dx2''
d2vB

dxdy

(5a)

(5b)

(5c)

The base flow is calculated in the rectangular integration
domain using the following boundary conditions. At the in-
flow boundary (x = XQ), Falkner-Skan boundary-layer profiles
(index FS) are specified as

(6)

Q, y) = uFS(y)

VB(XO, y) = vFS(y)

At the wall, the conditions

UB(X, 0) = 0

VB(X, 0)=fB(x)

dvB

dy X90
= 0

(7a)

(7b)

(7c)

are used. Thus, timewise constant suction can be applied to
stabilize the base flow. The wall vorticity is calculated from

dx x90
d2vB

dy2
_ 1 d2vB

x90 Re dx2 x90
(Id)

At the outflow boundary (x = XN), Eqs. (5a) and (5b) are
solved using

and

1
Re dx2

I d2vB

Re dx2

xN,y = 0

= o

(8a)

(8b)

whereas UB is calculated from the Poisson-type equation

with

_
Re~dx2~dy2

1 d2uB

Re dx2 = o

(8c)

(8d)

The freestream boundary (y = yu) is far enough from the wall
so that potential flow can be assumed with

(9a)

UB is prescribed according to a given streamwise pressure
gradient,

(9b)

(9c)

and VB is calculated from the continuity equation,

dvB

x,yM

dup

~dx

The equations are discretized with finite differences of
fourth-order accuracy in the x and y directions. The vorticity
transport equation is solved with a pseudo-unsteady time-
marching technique: the derivatives with respect to y are
treated explicitly (Euler forward), and the x direction is treated
implicitly (Euler backward). The Vg-Poisson equation is
solved with a vectorizable, stripe pattern Gauss-Seidel-like line
iteration, and the UB equation is directly solved.
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The calculation of the disturbance flow is based on three
vorticity transport equations for the vorticity components

aco* a
dt dy x y

— (u ruz -
dz

a,
+ — (w o)y

a
—— (
dy

- v 'coz' - VBUZ - v

- V5COZ' - V '

= Aco*

= Aco

= ACOZ'

and three Poisson-type equations
d2uf a2w' acov' av
a*2 az2 "

Av' = •

dz dxdy
co* 3<j)z

dz~~dx

aco; a2v'

(10a)

(lOb)

(lOc)

(10d)

(10e)

(lOf)

for the three velocity components. The Laplace operator is
defined as

= _ _ _ _ _
" ~Re 'dx2 ay2 ~Re 'dz2

Equations (lOa-lOf) are solved with the following boundary
conditions. At the upstream boundary (x = JCG), we assume
that all disturbances are zero,

f'(xQ,y,z, 0 = 0 (U)
where /' denotes the variables u ', v ' , w', co* , co/ , and co
respectively. At the wall, no-slip conditions are used, thus

M ' ( x , 0 , z , 0 = 0

w'(x,0,z, 0 = 0

(12a)

(12b)

The v '-velocity component is prescribed as a function of jc, z,
and /,

, 0 (12c)

This allows the generation of disturbances in the integration
domain by local time-dependent blowing and suction within a
narrow strip at the wall as will be discussed later. The vorticity
components are calculated from the following equations:

av a2co* a2co; a -
——— + — Av '
dydx dzaz 2 "

0)y(X9 0, Z, 0 = 0

-^L. _ _^£ _ ^v /

(12d)

(12e)

(12f)

At the outflow boundary, the disturbances are assumed to be
spatially periodic with a wave number a (see Fasel et al.5), and
hence Eqs. (lOa-lOf) are solved using

dx2 xN,y,z,t = -a2f'(xN, y, z, 0 (13)

for each variable/'. The wave number a is an expected wave
number for the disturbances (near the outflow boundary)
resulting from the primary instability. The energetic scales
resulting from the primary (and possible secondary) instability
are considered the most difficult to pass through the outflow
boundary without causing reflection. Our past experience with
using a of the primary instability in Eq. (13) supports this
expectation. Using this boundary condition, large-amplitude
disturbances that are composed of nonlinearly generated dis-
turbance components with different wave numbers cannot
pass through the boundary without causing noticeable reflec-
tions. Therefore, as noted for previous calculations, the out-
flow boundary was moved ahead of the large amplified vorti-
cal entities propagating downstream after initiation. This is
the region of dominant sources in Eq. (1). As discussed in Sec.
I, their influence reaches all boundaries (after attenuation with
distance), and all of the dipole reflections from the boundaries
are unphysical. Therefore, to minimize reflections from the
outflow condition, Eq. (13), or any equivalent one, the physi-
cal disturbances near the outflow boundary need to (and, as
we shall see, can) be reduced to small levels. Such a reduction
of these amplitudes can be achieved with measures described
in the next section.

As for the base flow, we assume potential flow along the
freestream boundary and thus

; (x, yM, Z, 0 = 0

> (x, yM> £,0 = 0

« (x, yu, £,0 = 0

(14a)

(14b)

(14c)

For the v ' component, exponential decay in the y direction is
prescribed,

dv'
x,yM,z,t V(x,yM, z, 0 (14d)

where a* is an expected wave number dependent on x.
For the spanwise boundaries at z =0 and z = \ > periodic-

ity conditions are employed. Thus, for all variables and their
derivatives,

O, t)=f'(x,y,\z, 0

d"f
dz"

_dnf
x,y,0,t~ dz"

(15a)

(15b)

are enforced.
Exploiting the periodic boundary condition, Eqs. (15a) and

(15b), in the spanwise direction, a spectral ansatz can be
introduced for all variables/':

0= (16)

The wave number 7 is related to the spanwise wavelength by
7 = 2v/\z - The Fk are the complex conjugates of the F.k, and
therefore Eqs. (lOa-lOf) can be transformed into K + 1 equa-
tions for a plane integration domain.

All derivatives with respect to x and y are discretized with
fourth-order accurate finite difference approximations, and
the integration in time is performed with a fourth-order accu-
rate Runge-Kutta-Merson scheme. The nonlinear terms are
computed using a pseudospectral method. For the solution of
the v '-Poisson equation, a multigrid method is employed with
a line-iteration technique for each grid that is similar to the
one used for the base flow. The u '- and w '-Poisson equations
are solved directly.

The disturbances are introduced through a narrow spanwise
strip at the wall. Whereas in most experiments disturbances



624 KLOKER, KONZELMANN, AND FASEL: TRANSITION BOUNDARY LAYERS

are introduced by a vibrating ribbon, in our simulations the
disturbances are introduced by time-periodic blowing and suc-
tion within the disturbance strip. This blowing and suction is
also an effective method to produce Tollmien-Schlichting
waves.10 With a given frequency and spanwise wavelength,
different kinds of two-dimensional and pairs of three-dimen-
sional oblique Tollmien-Schlichting waves, as well as longitu-
dinal vortices, can be generated. For the investigations in this
paper we choose

; (x, z, t) = [A2D + A3Dcos(yz)] (x)sm(/3t) (17)

where fx is shown in Fig. 1 and A2D and A3D denote the two-
and three-dimensional disturbance amplitudes, respectively.
Flow visualizations of transition in adverse pressure gradient
boundary layers without artificial forcing by Gad-el-Hak et
al.11 suggest that an assumption of the form of Eq. (17) is
sufficient to initiate the key mechanisms.

III. Numerical Calculations
A. Test Case

As a test case for the various techniques of treating the
region near the outflow boundary, the simulation of a funda-
mental resonance breakdown of a flat-plate boundary layer
with a strong adverse pressure gradient (Hartree parameter
/3// = - 0.18) was chosen. In contrast to a zero pressure gradi-
ent flow, the amplification rates are very large. As mentioned,
this leads to a short breakdown region, which saves computa-
tional costs. Furthermore, the spatial breakdown in boundary
layers with large adverse pressure gradients has not been inves-
tigated numerically. The flow visualizations of Gad-el-Hak et
al.11 for the case of a temporally decelerating boundary layer
provide us with an idea of what type of breakdown to expect.

To judge the effectiveness of the different methods to treat
the outflow region, the calculations are compared with a refer-
ence case without any special treatment. For this reference
case, the integration domain was extended in the downstream
direction far enough to prevent the leading wave front from
reaching the outflow boundary before a timewise periodic
flow was established in the region of physical interest.

The flow parameters for the test case are shown in Table 1.
Two disturbance modes were introduced downstream of the
inflow boundary by time-periodic blowing and suction within
the disturbance strip: a two-dimensional wave with the fre-
quency parameter F = 1.08 and the amplitude A2D = 0.0001
and a pair of oblique three-dimensional waves with identical
frequency and amplitude A3D = A2D. The amplitude of the
disturbance input is small enough to insure an initial linear

Table 1 Physical and numerical parameters for the simulations

Reference length
Reference velocity
Kinematic viscosity
Global Reynolds number
Hartree parameter
Position of inflow boundary
Mesh size in streamwise direction
Height of the integration domain
Mesh size in normal direction
Spanwise wave number
Number of modes [see ansatz, Eq. (16)]
Disturbance region (see Fig. 1)

Disturbance frequency
(/3 = /3L/t/oo, /^-angular frequency)

Frequency parameter
(F = fiL/U00xlQ4/Re, ^-angular frequency)

Disturbance amplitudes

Time step (largest, smallest)

L=0.05 m
*7oo = 30m/s
*>=1.5xlO-5m2 /s
Re = 105

te=-0.18
Xo= 1.5846
Ax = 0.008434
yM = 34.79
4y = 0.36234
7 = 30.62
K = 2
xi = 2.082,
X2 = 2.285
0=10.8

^=1.08

A2D = 0.0001,
Aw = 0.0001
A f = 0.01164,
0.002909

0.4

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I I X

Xl *2
Fig. 2 Instantaneous spanwise vorticity contours in the x-y plane at

(easel).

10

10-i.o

10-2.0

10-3.0

10-u.o
2.0 2.5 3.0 3.5

Fig. 3 Amplification curves of the maximum of the u ' disturbances
for the two-dimensional mode (1, 0) and for the three-dimensional
mode (1, 1); a and b: growth rates of primary linear stability theory
(parallel and spatial) at x = 2.5.

i .o

modes
(1,0)

(1,1)
(1,0)

(1,1)

Navier-Stokes
solution
linear stability
theory

_._._._._._._._._._. baseflow

Fig. 4 Normalized amplitude distributions of the modes (1, 0) and
(1, 1) and base flow profile at x =2.5; comparison of Navier-Stokes
solution (case 1) and linear stability theory.

disturbance development in the downstream direction. The
physical aspects of the test case are summarized next for the
reference calculation.

B. Reference Case
Typical results of the reference calculation are presented in

Figs. 2-7. An overall impression of the instantaneous flow-
field can be obtained from Fig. 2, where lines of constant
spanwise vorticity o>z are shown. The flow attains a time-peri-
odic state up to about x = 4.0, after seven disturbance peri-
ods, at the time when the simulation was stopped. Down-
stream of this region, the flow is nonperiodic and finally
random in nature. Up to approximately x = 3.0, the generated
Tollmien-Schlichting waves are monotonically amplified ac-
cordingly to the prediction of linear stability theory for the
decelerated boundary layer (Fig. 3). The normalized ampli-
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Fig. 5 Amplification curves of the maximum of the u ' disturbances
for different modes (case 1).

i .o

0.8
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O . U

0.0
10 15 20

y
Fig. 6 Mean-flow u -velocity profiles at different x locations (case 1).

3.5
3.0 -
2.5 -
2.0
1.

1.5 2.0 2.5 3.0 3.5 4.0
X

Fig. 7 Shape factor Hn vs x (case 1).

component u exhibits a changeover to a shape typical of
turbulent profiles. In addition, the shape factor Hn decreases
for Hi2 = 3.3 for the laminar Falkner-Skan base flow to about
Hi2 = 1.6 at x = 4.0 (Fig. 7). Of course, the disturbance be-
havior in the highly nonlinear regime (downstream of x - 3.5)
has to be seen in a qualitative manner. Because of the coarse
resolution, the simulation cannot reveal complete details of
the breakdown to turbulence. More details and references for
the case of a fundamental resonance breakdown of a strongly
decelerated boundary layer are given by Kloker and Fasel.12

C. Treatment of Outflow Region
The numerical calculation described earlier was used as a

reference case for other calculations, where different methods
of treating the region near the outflow boundary were investi-
gated. For these cases, an integration domain was used that was
shorter than that of the reference case. Now, the disturbances
did reach the outflow boundary where the amplitude level near
the boundary depended on the measures applied. The various
calculation cases, indicating the treatment of the outflow re-
gion, are listed next (more details are given in Table 2):

1) no treatment of outflow region; "long" integration do-
main (reference case)

2) no treatment of outflow region; "short" integration do-
main

3) acceleration of the base flow and local suction

-0.2

———— 7 disturbance periods
————— 8 disturbance periods

Fig. 8 Instantaneous signals of the u ' disturbance at y = 0.72 and
z = 0 for different time levels (case 2).

Table 2
tude distributions for the u'-velocity component obtained
from the Navier-Stokes calculation agree well with the results
of a parallel linear stability analysis (Fig. 4). Downstream of
x = 3.0, the fundamental three-dimensional mode (1, 1) un-
dergoes enhanced amplification due to a resonant interaction
with the two-dimensional mode (1, 0) (modes are labeled
according to their position in the frequency-spanwise wave
number spectrum relative to the corresponding disturbance
values). The longitudinal vortex [mode (0, 1)], which is neces-
sary for the nonlinear coupling mechanism, was nonlinearly
generated by the modes (1, 0) and (1, 1). As can be seen in Fig.
5, at x = 3.0 the amplitude of this longitudinal vortex has
grown to the level of the mode (1, 1), thus providing the
conditions for the resonant interaction.

Also, at about x = 3.5, the disturbed and nonlinearly gener-
ated modes show saturation (Fig. 5) at an amplitude level of
about 15% of the reference velocity £/«,, with a maximal
change in the UB base-flow profile (0, 0) of about 40%. Full
breakdown to turbulence would probably occur here if the
spatial resolution were fine enough. In this simulation, how-
ever, only three modes in the spanwise direction [K = 2 in Eq.
(16)] were used. But, as can be observed in Fig. 6, downstream
of x = 3.75 the mean-flow profile of the streamwise velocity

Treatment of outflow region for the
different simulation cases

Case
1
2
3

6.316
4.967
4.967

*/b Measures taken in outflow region0

4.106 UB velocity at the upper boundary, Eq. (9b)
is continuously increased from UB (*/) = 0.926
to UB(XN) = 1.067 according to a Hartree
parameter /5// = 1.0 downstream of #/, suc-
tion is applied from */ to x = 4.314 with a
volume flow of m = - 0.000791

4 4.967 4.106 Same as for case 3 plus linearized equations
starting from xt

5a 4.967 3.600 Viscosity is increased by a factor of 100 from
xito x = 3.811

5b 4.967 3.600 Viscosity is increased by a factor of 1000 as
for case 5a

6 4.967 4.494 Disturbance vorticity is weighted with the
function FD shown in the lower part of

______________ Fig. IQb _____________________
axN — position of outflow boundary.
bx, — start of outflow region.
CA11 changes in the flow imposed in x direction at the beginning of the influence
zone are smooth up to the second derivative. This is achieved by connecting
different functions with a parabola of 5th order.
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Fig. 9 Amplification curves of the maximum of the u' disturbances
for different modes.

4) acceleration of the base flow, local suction, and lin-
earized equations

5) increased viscosity
6) gradually suppressed disturbance vorticity

The effects of the various measures are discussed subse-
quently.

D. Numerical Results and Comparison
The instantaneous u '-velocity signal over x (at a fixedy and

z position) of calculation case 2 is shown in Fig. 8 after a
calculation time of seven and eight disturbance periods. After
the seventh period, the disturbances have not yet reached the
outflow boundary (XN - 4.967), whereas one period later the
leading wave front has already started to pass through the
boundary. Physically, the two signals should coincide up to
x = 3.5 due to the time-periodic behavior in this early transi-
tion stage. Obviously, at the later time level, there is an extra-
strong upstream effect induced by the leading vorticity wave
front passing through the outflow boundary. A comparison of
the downstream development of the maximal u' amplitudes
for the different modes (Fig. 9a) with that of the reference case
(Fig. 5) reveals the drastic upstream contamination, in particu-
lar on the two-dimensional modes (1, 0) and (0, 0) between
x = 1.58 and 3.5. Therefore, in the following, the behavior of
the mode (1, 0) upstream of x = 3.5 is used to validate the
efficiency of the various methods of treating the outflow
region. The only explanation for the growth of this mode and
for the mean-flow change upstream of the wall excitation slot

baseflow
case 1
case 6

l.S-i

0.5 -

0.0 -

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
X

a) Whole x domain of case 6
1.5

4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
X

b) Close-up of relaminarization region with function FD applied in
case 6

o.oos n

o.ooo -

-0.005
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

X

c) Difference between cases 1 and 6 over whole x domain
Fig. 10 Comparison of the instantaneous total spanwise vorticity uz
signals of cases 1 and 6 after eight disturbance cycles at y = 0.72 and
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— baseflow
case 1

— case 6
1.0

0.6

0.2 •

0.0 -

1.5 2.0 2.5 3.0 3.5

a) Whole x domain of case 6
i .o •

4.0

-0.2
4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

b) Close-up of relaminarization region x

0.005

Au

0.000 -

-0.005
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

X
c) Difference between cases 1 and 6 over whole x domain

Fig. 11 Comparison of the instantaneous total streamwise velocity u
signals of cases 1 and 6 after eight disturbance cycles at y = 0.72 and
z=0.

appears to be the buildup of a global instability by continued
reflection and re-reflections of pressure fields between the
inflow and outflow boundaries, alluded to in Sec. I. The
seemingly disorganized vorticity field of Fig. 2 contains large-
scale, nearly regular, oscillatory and mean-flow structures. Of
these, the two-dimensional modes reflect most efficiently and
should become dominant in global instabilities (if any de-
velop).

In case 3, acceleration of the boundary layer (corresponding
to a Hartree parameter $H = 1.0) and additional suction at the
wall were applied in the outflow region. This resulted in a
reduction of the disturbance level at the outflow boundary by
a factor of about 10 (Fig. 9b). Evidently the reduction of the
disturbances arriving at the outflow does not prevent the
global instability buildup upstream of the excitation slot. The
global instability merely saturates at lower amplitudes. An
additional linearization of the vorticity transport equations
within the outflow region (case 4), to fully exploit the stabiliz-
ing effects of acceleration and suction as predicted by linear
theory, leads only to minor improvements.

Imposing an artificial increase of the viscosity downstream
of x = 3.6 by a factor of 100 (case 5a, Fig. 9c) or 1000 (case
5b, Fig. 9d) is more effective. The high viscosity strongly
damps the three-dimensional fluctuations (1, 1) and (1, 2), as
well as the longitudinal vortices (0, 1) and (0, 2) in Fig. 9d.
However, pressure feedback upstream of the slot persists,
though palpably diminished. A further increase of viscosity
may suppress the levels further. However, in our explicit nu-
merical method, the viscous time step restriction enforces a
reduction of the time step proportional to the viscosity in-
crease. If this restriction falls below the convective limit,

which sets the bound for the time step in our numerical scheme
without additional viscosity, the overall efficiency of the
method is compromised.

Detailed analysis of the results of cases 2-5 reveals that the
upstream effect of any disturbances passing the outflow
boundary is directly dependent on their amplitudes at the
outflow boundary. The physical means of stabilization dis-
cussed earlier were not efficient enough to reduce these distur-
bance levels to values low enough for the upstream reflections
and re-reflections to become negligible, at least not without an
increase in computing cost (either by requiring smaller time
steps or using an extended outflow region).

The results obtained from case 5, where the viscosity was
increased, led to the idea of influencing the disturbances di-
rectly to suppress the fluctuations. Thus the time step restric-
tion mentioned earlier would be avoided. Furthermore, vari-
ous numerical tests have shown that the disturbance flow in
the outflow region should be treated such that the continuity
condition is always preserved. Otherwise, infinitely fast prop-
agating, sound-like disturbances may contaminate the flow-

a) Case 1 (reference case, long integration domain)

Relaminarization zone

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
X

b) Case 6 (short integration domain with relaminarization zone)
Fig. 12 Instantaneous spanwise vorticity wz contours in the x-y plane
at z= \z/2 after eight disturbance cycles.

a) Case 1 (reference case, long integration domain)

Relaminarization zone

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
X

b) Case 2 (short integration domain with relaminarization zone)
Fig. 13 Instantaneous streamwise velocity u contours in the x-y
plane at z= Xz/2 after eight disturbance cycles.

Relaminarization zone
FT 3-5
Hl2 3.0

2.5
2.0
1.5

1.5 2.0 2.5 3.0 3.5 4.0 U . 5 5,0
X

Fig. 14 Shape factor HU vs x for simulation case 6.
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field. In our formulation of the Navier-Stokes equations, we
can directly Influence the disturbance vorticity alone while
preserving continuity and minimizing pressure disturbances.
In the calculation of case 6, the vorticity components are
spatially suppressed in the outflow region by multiplying them
with a weighting function Fw(x, y, z) = FD(x) after each
(intermediate) time step. The function FD(x) is 1 at the begin-
ning of the relaminarization zone and decreases gradually to 0
at a few grid points upstream of the actual outflow boundary
XN. The velocity components are calculated in the same way as
in the remainder of the integration domain, namely using the
Poisson-type equations, Eqs. (lOd-lOf), which satisfy implic-
itly the continuity condition. The gradual decay of the right-
hand sides of Eqs. (lOd-lOf) in the relaminarization zone then
enforces the decay of the velocity components. Results for
case 6 are shown in Figs. 9e-12.

The weighting function for reducing the disturbance vortic-
ity in the outflow region is shown in the lower part of Fig. lOb.
As can be seen in Fig. 9e, all u '-fluctuation amplitudes decay
rapidly to very low values. The comparison of the results with
case 1 (Fig. 5) does not exhibit any significant difference in the
u' amplitudes upstream of about x = 4.5. In Figs. lOa and
lOb, the instantaneous total vorticity component coz close to
the wall 0 = 0.72) at z = 0 is plotted after the eighth period
for both case 6 and reference case 1. Corresponding plots for
the total stream wise velocity component are given in Figs, lla
and lib. Comparison of the curves for calculation cases 1 and
6 demonstrates the drastic decay of the vorticity and velocity
disturbances and shows that the signals are practically identi-
cal upstream of about half a wavelength from the beginning of
the relaminarization zone. Even when taking extremely small
differences into consideration, as shown in Fig. lOc, differ-
ences are discernible only up to x = 3.5. Obviously, these
extremely small differences are hardly relevant to the main
mechanisms/The upstream effect may be even smaller in a
flow with a zero or negative streamwise pressure gradient
because of the smaller effect of the pressure feedback mecha-
nism. An enhanced impression of the efficiency of the artifi-
cially forced relaminarization process is obtained from Figs.
12 and 13, where contour plots of the instantaneous vorticity
uz and velocity u in the x-y plane at z = Xz/2 are shown for
cases 1 and 6. Finally, Fig. 14 further documents the relami-
narization process by the rapid increase of the integral
boundary-layer parameter Hn from about 1.6 back to the
laminar value of 3.3.

The contrast in the efficiency of the vorticity suppression
zone and the other strategies is striking (compare Figs. 9a-9e).
The comparison of the reference flowfields with those using
the vorticity suppression zone in Figs. 10-13 suggests that,
although none of the flowfields is truly physical, both calcula-
tions, cases 1 and 6, capture correctly the dominant mecha-
nisms of early transition.

IV. Conclusions
In this paper, we presented various measures to treat the

outflow region for direct numerical simulations of laminar-
turbulent transition in spatially evolving boundary layers
based on the Navier-Stokes equations. These measures are
aimed at relaxing the highly fluctuating flow in the region near
the outflow boundary of the integration domain to a practi-
cally steady laminar state. Then the calmed flow should pass
through the outflow boundary region without causing signifi-
cant upstream reflections. Our numerical experiments were
consistent with the theoretical framework for simple and zone
boundaries outlined in Sec. I. Both types of boundaries can
contribute to the generation of unphysical pressure fields that
propagate to the inflow boundary and reflect back and forth.
In our case of an adverse pressure gradient, which is a severe
test of the procedure, substantial coherent vortical structures
are present even when the computed flowfields appear disor-
ganized. Of these structures, two-dimensional modes are re-
flected most efficiently and apparently build globally unstable

fields with different saturation levels of disturbance. Among
the techniques tried, that of the vorticity-suppression zone
evidently succeeded in keeping the disturbances below the
nonlinear threshold level necessary for global instability. Ana-
lytical proofs of such behavior are unlikely to be forthcoming
in the near future. Thus we must rely on numerical evidence,
such as provided in Figs. 10 and 11. In our formulation of the
governing equations in terms of vorticity, supression of all
components of fluctuating vorticity can be achieved easily at
successive grid points within a "relaminarization zone" near
the outflow boundary. With this procedure, practically total
dissipation of all disturbances can be accomplished without
violating the continuity condition and without imposing any
additional restrictions on the usable step size for the time
integration. The procedure should be even more effective in
more stable wall layers. It also holds promise for applications
to the more unstable free shear layers, wakes, and jets.
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